

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

Table	of	Contents
Introduction

Introduction

Variables

Strings

Conditions

Arrays

Loops

Hashes

Dealing	With	Errors

Object-Oriented	Programming

What's	Next?

2

Introduction

3

Introduction
Hey,

Thanks	a	lot	for	picking	up	this	book!	You	are	going	to	love	it!

It	will	take	some	time	for	the	concepts	in	this	book	to	sink	in,	especially	if	you	are	new	to	this	programming	thing,	but	with
patience,	persistence	&	commitment	you	can	do	anything	you	desire.

Let's	start	with	an	overview	of	the	Ruby	ecosystem	&	then	we	are	going	to	see	how	to	setup	your	computer	for	Ruby
development.

The	Ruby	Ecosystem

Ruby	was	created	about	20	years	ago	by	Yukihiro	Matsumoto,	also	known	as	"matz"	in	the	Ruby	community.

Ruby	is	an	Object-Oriented	language,	you	will	learn	exactly	what	that	means	in	the	Object-Oriented	Programming	chapter	of	this
book.

In	Ruby	we	share	code	in	packages	that	we	call	"gems".

You	can	install	a	gem	in	your	system	using	the	 	gem	install		command	&	instantly	have	access	to	a	program	someone	else	has
created.

Isn't	that	cool?

You	don't	need	to	use	any	gems	to	learn	the	basics	of	Ruby	programming,	so	it's	not	something	you	need	to	learn	more	about	yet.

Now	your	first	step	will	be	to	setup	your	computer	for	Ruby	development.

Setting	Up	Your	Environment
If	you	are	using	Windows	you	want	to	go	to	this	site	to	download	Ruby:

https://rubyinstaller.org/downloads/

You	want	the	first	file,	which	at	the	time	of	this	writing	is	 	Ruby	2.4.2-2	(x64)	.

Just	download	&	install	it	like	any	other	program.	If	no	errors	appear	then	you	have	Ruby	installed	on	your	computer!

Now	to	start	writing	your	Ruby	programs	you	will	need	to	open	a	terminal.

To	do	that	open	the	windows	menu	&	type	 	cmd.exe	.

Then	press	enter.

It	will	look	something	like	this:

Introduction

4

https://rubyinstaller.org/downloads/

The	next	step	is	to	type	inside	this	terminal	window.

You	want	to	type	this:	 	irb	.

This	will	launch	a	Ruby	interpreter.

It	should	say	something	like:

irb(main):001:0>

Now	you	are	ready	to	start	typing	Ruby	code!

Linux	&	Mac	Setup

If	you	are	on	Linux	or	MacOS	then	you	probably	already	have	Ruby	installed.	You	can	confirm	this	by	opening	a	terminal	(search
for	"terminal"	in	your	menu),	then	typing	 	ruby	-v	.

This	should	print	your	Ruby	version.

Like	this:

ruby	2.4.1	(2017-03-22	revision	58053)	[i686-linux]

If	you	don't	get	a	Ruby	version	then	refer	to	this	site	for	more	details	on	how	to	install	Ruby	for	your	particular	Linux	version	or
Mac.

Your	First	Ruby	Program
Let's	start	with	something	super	simple.	Ruby	understands	numbers	&	basic	arithmetic	operations.

Try	this:

5	*	5

This	will	result	in:

Introduction

5

https://www.ruby-lang.org/en/documentation/installation/

=>	25

If	this	doesn't	work	make	sure	to	type	this	inside	the	black	terminal	window	that	you	opened	before.	Also	make	sure	you	have
	irb		open,	it	needs	to	say	something	like	 	irb(main):001:0>	.

Now	try	some	other	math	operations	just	to	get	used	to	this	terminal	thing!

Saving	Your	Programs	Into	Files
If	you	would	like	to	save	your	programs	you	can	use	a	code	editor	like	Atom.

It's	a	bit	harder	to	run	your	program	from	a	file.

You	will	have	to	find	the	full	path	to	your	file	(available	on	Atom's	bottom-left	section),	copy	it	&	then	from	a	terminal	window
run	 	ruby		+	a	space	+	the	full	path	to	your	Ruby	file.

For	example:

ruby	C:\Users\Jesus\test.rb

Notice	that	by	convention	we	end	Ruby	files	with	the	extension	 	.rb	.

Now	you	know	how	to	save	your	program	into	files	&	run	them.	But	for	learning	you	are	going	to	spend	most	of	your	time	under
the	interactive	interpreter	 	irb	,	because	it's	faster	to	type	in	&	see	the	results	directly.

Oh,	and	one	more	thing!

If	you	try	these	math	operations	from	a	file	you	may	notice	that	nothing	prints	on	the	screen.	That's	because	you	have	to	add
	puts		in	front	of	the	operation.

Like	this:

puts	5	*	5

The	interactive	interpreter	 	irb	,	already	does	this	for	you,	but	if	you	run	your	program	from	a	file	you	will	need	to	use	 	puts		to
see	the	results	on	the	screen.

Summary
In	this	chapter	you	learned	about	Ruby's	history	&	ecosystem.	You	also	learned	how	to	setup	your	computer	for	Ruby
development	&	how	to	run	Ruby	programs	(from	a	file	or	using	the	 	irb		interpreter).

Introduction

6

http://atom.io

How	do	you	work	with	data?
In	Ruby,	and	most	programming	languages	we	use	something	called	"variables".	Like	the	name	implies	variables	can	change	&
we	use	them	as	name	for	things.

So	if	we	have	a	number	like	 	20	,	it	could	have	any	meaning.

But	we	can	use	a	variable	to	give	it	meaning.

Example:

age	=	20

Now	we	know	that	this	 	20		represents	an	age!	This	also	allows	us	to	reference	the	number	 	20		by	name.

Notice	what	have	done	here.

This	is	an	"assignment".	We	have	told	Ruby	to	assign	the	variable	 	age		to	the	value	 	20	.

We	can	tell	Ruby	to	print	the	value	of	 	age		like	this:

puts	age

This	will	print	 	20		on	the	screen.

You	can	treat	this	 	age		just	the	same	as	the	 	20	,	so	you	can	do	math	with	it.

Example:

puts	age	*	2

This	will	print	 	40	.

Another	example:

puts	age	*	age

Will	print	 	400	.

Try	all	of	this	yourself	so	you	can	get	familiar	with	using	variables!

Variables

7

How	do	you	work	with	text?
A	string	is	a	sequence	of	characters.

Strings	are	how	we	work	with	text	in	most	programming	languages.

Here's	what	a	string	looks	like:

"hello"

This	is	a	string	containing	the	word	"hello".

Notice	the	quotation	marks	("")	before	&	after	the	word.	These	act	as	delimiters	for	when	a	string	is	starting	&	ending.

They	are	very	important	so	don't	forget	them!

A	string	can	have	anything	inside,	including	numbers,	symbols	&	special	characters	(like	 	\n	,	the	newline	character).

Everything	inside	a	string	is	just	part	of	the	string.

Meaning	that	if	you	have	a	string	which	is	just	composed	of	numbers,	like	this	one:

"123"

It's	still	a	string.	In	other	words,	it	won't	behave	like	numbers.

So	if	you	try	to	add	up	two	strings:

"123"	+	"123"

You	will	end	up	with	a	new	string:

"123123"

But	if	you	had	real	numbers	(without	quotation	marks)	then	they	would	add	up	as	you	would	expect:

123	+	123

Results	in:

246

The	quotation	marks	make	all	the	difference!

Can	I	use	single	quotes?

Yes,	you	can!

This	is	also	a	valid	string:

'hello'

Strings

8

But	you	should	stick	with	double	quotes	(")	for	now.

Basic	String	Operations

So	what	kind	of	things	can	you	do	with	strings	besides	storing	data?

Well	you	can	call	methods	on	them,	just	like	any	other	object.	Remember	that	in	Ruby	most	things	you	can	interact	with	are
objects	&	objects	have	methods	you	can	use	to	ask	an	object	to	do	something.

How	would	you	know	what	methods	are	available	on	 	String		objects?

One	way	to	find	out	is	to	use	the	Ruby	documentation.

So	try	this	now,	go	to	this	page:

http://ruby-doc.org/core-2.4.0/String.html

And	of	the	left	you	will	find	a	column	title	"Methods".

That's	the	list	of	methods	available	to	you!

Don't	worry	if	it	seems	overwhelming,	you	don't	need	to	know	all	of	them,	at	least	not	now	:)

I	will	tell	you	which	methods	are	important	right	now.

You	should	be	familiar	with	the	following	methods:

Method Description

gsub Replace	part	of	the	string	with	something	else

split Split	the	string	into	an	array	of	smaller	strings.	Default	separator	is	a	space.

upcase Convert	all	the	letters	to	UPPERCASE	letters

downcase Convert	all	the	letters	to	downcase	letters

include? Returns	true	if	a	string	contains	another	other	string

start_with? Returns	true	if	a	string	starts	with	another	string

chars Converts	a	string	into	an	array	of	its	characters

to_i Converts	a	string	containing	numbers	into	an	actual	number	(to_s		is	the	reverse	operation)

Please	notice	that	none	of	these	methods	will	actually	change	your	strings.

They	return	a	new,	updated	string,	so	keep	that	in	mind.

You	can	see	this	in	action:

sentence	=	"We	have	many	dogs"

sentence.gsub("dogs",	"cats")

If	you	didn't	know	this	you	would	expect	that	 	sentence		now	contains	the	string	 	"We	have	many	cats"	.

But	that's	not	the	case.

So	what	do	you	do	if	you	want	to	"save"	the	changes?

Well	the	simplest	option	is	to	re-assign	the	variable.

Strings

9

http://ruby-doc.org/core-2.4.0/String.html

Like	this:

sentence	=	sentence.gsub("dogs",	"cats")

Pay	attention	here	because	this	is	a	small	change.	All	I	did	is	add	 	sentence	=		in	front	of	our	call	to	 	gsub	.

Now	the	value	of	 	sentence		has	changed	&	it	contains	the	new	value	 	"We	have	many	cats"		instead	of	 	"We	have	many	dogs"	.

How	do	you	mix	variables	&	strings?

Sometimes	you	may	have	a	value	saved	in	a	variable	&	you	want	to	form	a	message	with	this	value	plus	some	text.

The	solution	to	this	is	called	"string	interpolation".

Here's	an	example:

name	=	"Peter"

puts	"Hello	#{name}"

This	will	 	print	"Hello	Peter"		on	the	screen.	The	key	here	is	this	funny-looking	thing:	 	#{}	.

That's	how	you	interpolate,	you	put	this	symbol	 	#{}		&	the	variable	name	inside	that	and	Ruby	will	take	care	of	the	rest	for	you.

Ruby	will	even	go	as	far	as	converting	numbers	into	strings	for	you	when	the	variable	is	a	number.

If	it	didn't	do	that	you	would	have	to	use	the	 	to_s		method	on	your	number	to	convert	it	into	a	string.

How	do	you	work	with	individual	characters?
Another	common	operation	is	to	work	with	the	individual	characters	of	a	string.

One	way	to	do	this	is	to	use	indexing,	just	like	if	you	were	working	with	an	 	Array	.

Example:

animal	=	"Cat"

puts	animal[0]

This	will	print	the	letter	 	"C"	,	 	animal[1]		would	print	the	letter	 	"a"	,	and	 	animal[2]		would	print	the	letter	 	"t"	.

Another	way	to	work	with	individual	characters	is	to	use	the	 	chars		method.

Example:

name							=	"David"

characters	=	name.chars

The	value	for	 	characters		will	be:

["D",	"a",	"v",	"i",	"d"]

So	now	you	have	an	actual	array	of	the	characters	&	can	use	 	Array		methods	like	 	each	,	which	was	not	possible	before.

If	you	want	to	put	this	array	back	into	a	string	you	can	use	the	 	join		method.

Strings

10

Example:

characters	=	["D",	"a",	"v",	"i",	"d"]

characters.join

Remember	that	this	doesn't	literally	convert	the	 	characters		variable	into	a	string.	It	simply	returns	a	new	string.

What	can	you	do	when	your	data	contains	quotation	characters?
Since	quotation	marks	are	used	in	regular	text	you	will	have	to	deal	with	this	at	some	point.

Here's	an	example:

"John's	brother	is	30	years	old"

In	this	case	this	will	work	just	fine,	because	the	single	quote	doesn't	get	in	the	way	of	the	double	quotes	that	we	are	using	for	our
string.

But	if	you	need	to	handle	double	quotes	inside	double	quotes...

"He	was	\"interested\",	but	I	think	he	should	be	committed."

Notice	the	 	\		character,	that's	how	we	"escape"	the	quotation	marks.	We	are	telling	Ruby	this	is	data	&	not	a	string	delimiter.

What	happens	when	you	multiply	a	string?
This	is	a	nice	little	trick	you	can	use	whenever	you	need	the	same	string	repeated	many	times.

Example:

puts	"A"	*	30

Will	print:

"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

Summary
You	learned	that	strings	are	a	sequence	of	characters,	that	strings	are	also	objects	so	you	can	use	methods	on	them	&	that	you	can
lookup	what	methods	are	available	on	the	Ruby	documentation.

You	also	learned	how	to	mix	together	variables	&	strings	by	using	string	interpolation.

Something	really	important	to	remember,	most	Ruby	methods	don't	change	your	object!	What	this	means	is	that	if	you	call
	upcase		your	string	will	remain	the	same,	but	you	will	get	a	new	string	that	has	changed.

So	remember	to	save	the	new	string	in	a	variable	if	you	want	to	use	it	later	:)

Strings

11

How	do	you	make	decisions	in	Ruby?
Very	often	you	will	want	your	program	to	be	able	to	make	decisions.

Decisions	based	on	some	data	or	condition.

Examples:

"if	the	room	is	too	cold	turn	on	the	heater"
"if	this	customer	has	been	with	us	for	more	than	3	years	then	send	him	a	thank	you	gift"
"if	we	don't	have	enough	stock	of	this	product	then	send	an	order	to	buy	more	&	tell	the	customer	he	will	have	to	wait	a	little
longer"

Things	like	that	is	what	we	mean	by	taking	decisions.	If	something	is	true	(the	condition)	then	do	something.

In	Ruby	the	way	we	do	this	is	to	use	an	 	if		statement.

Like	this:

if	stock	<	1

		puts	"Sorry	we	are	out	of	stock!"

end

We	can	also	say	"if	this	is	NOT	true	then	do	this	other	thing":

if	stock	<	1

		puts	"Sorry	we	are	out	of	stock!"

else

		puts	"Thanks	for	your	order!"

		stock	-=	1

end

Notice	the	syntax.	It's	important	to	get	it	right.

The	 	stock	<	1		part	is	what	we	call	a	"condition".	This	is	what	needs	to	be	true	in	order	for	the	code	inside	the	condition	to
work.

In	this	example	we	are	using	the	"less	than"	symbol	 	<	,	but	there	are	other	symbols	you	can	use	for	different	meanings.

Here's	a	table:

Symbol Meaning

< Less	than

> Greater	than

== Equals

!= Not	equals

>= Greater	OR	equal	to

<= Less	OR	equal	to

Notice	that	we	use	two	equal	 	==		symbols	to	mean	equality!

One	equals	sign	 	=		in	Ruby	&	most	programming	languages	means	"assignment"	so	make	sure	to	use	 	==		when	you	want	to
find	out	if	two	things	are	the	same.

Conditions

12

Multiple	Conditions

Sometimes	it's	not	just	as	simple	as	 	if		/	 	else	.

And	what	you	need	is	to	check	for	different	conditions	at	the	same	times.

For	example,	you	are	trying	to	figure	out	if	a	person's	age	is	in	a	certain	range	&	different	ranges	mean	different	things	in	your
application.

The	solution,	in	this	case,	is	to	use	a	 	case		statement.

It	looks	like	this:

age	=	31

case	age

when	1..18

		puts	"You	are	too	young."

when	19..40

		puts	"How	are	you	doing	today?"

when	41..99

		puts	"We	have	the	perfect	product	for	you!"

end

In	this	example	we	are	using	ranges	(like	 	19..40)	to	check	for	the	value	of	the	 	age		variable.	If	the	age	doesn't	match	any	of
those	ranges	then	nothing	will	happen.

An	alternative	is	to	use	the	 	elsif		statement.

Example:

if	age	>	1	&&	age	<=	18

			puts	"You	are	too	young	to	drink."

elsif	age	>=	19	&&	age	<=	40

		puts	"How	are	you	doing	today?"

elsif	age	>=	41	&&	age	<=	99

		puts	"We	have	the	perfect	product	for	you!"

end

As	you	can	see	this	a	bit	harder	to	read,	so	for	ranges	I	would	always	use	a	 	case		statement.

Logic	Operators

In	our	last	example	you	will	also	notice	this	 	&&		symbol,	which	we	haven't	covered	before.

This	means	that	both	conditions	need	to	be	true	for	the	whole	thing	to	be	true.

So	if	we	have:

if	name	==	"David"	&&	country	==	"UK"

end

Both	 	name		AND	 	country		need	to	match	for	the	whole	condition	to	be	true.

We	also	have	the	 	||		operator.

Example:

if	age	==	10	||	age	==	20

Conditions

13

end

Then	 	age		can	be	 	10		OR	 	20		for	the	condition	to	be	true.

Notice	how	these	two	operators	(&&	,	 	||)	allow	you	to	combine	conditions,	but	they	need	to	be	proper	conditions.

In	other	words,	you	CAN'T	do	this:

if	age	==	10	||	20

end

This	is	not	valid.

You	need	a	full	condition	on	each	side	(age	==	10	||	age	==	20).

Things	to	Watch	Out	For

Just	before	we	end	this	lesson	&	want	to	mention	a	few	problems	you	may	run	into	&	what	to	do	about	them.

The	first	is	about	comparing	strings.

When	comparing	two	strings	they	must	look	exactly	the	same!

Including	the	"casing".

So	"hello"	&	"Hello"	would	be	different	words	according	to	Ruby	(and	other	languages).

The	way	to	solve	this	is	to	make	sure	you	"normalize"	both	sides	in	some	way.

Example:

name	=	"David"

expected_name	=	"david"

if	expected_name	==	name.downcase

		puts	"Name	is	correct!"

end

The	key	here	is	the	 	downcase		method	on	 	name	,	this	way	we	can	make	sure	it	will	always	be	downcased	so	we	can	avoid	the
problem.

Another	problem	you	may	come	across	with	related	to	arrays	is	"special	symbols".	These	symbols	are	for	things	like	new	lines
	\n		&	the	tab	key	 	\t	.

So	the	problem	comes	if	you	try	to	compare	two	strings	that	look	the	same,	but	they	will	not	match	if	one	of	them	has	one	of	these
special	symbols.

To	see	them	you	will	need	to	use	the	 	p		method:

name	=	gets

p	name

Try	this	code,	type	something	in,	and	you	will	notice	that	 	name		contains	the	newline	character	(which	is	not	normally	visible
with	 	puts).

To	remove	this	character	you	can	use	the	 	chomp		method.

name	=	gets.chomp

Conditions

14

p	name

Now	the	newline	character	(\n)	is	gone!

Summary

In	this	chapter	you	learned	about	conditions.	Conditions	allow	you	to	take	decisions	in	your	code,	this	is	what	makes	your
program	"think".

You	also	learned	how	to	use	the	 	if		statement	&	the	 	case		statement	to	handle	different	situations	where	you	need	to	make
decisions.

Finally,	you	learned	about	a	few	things	to	watch	out	for,	like	string	"casing"	&	special	symbols.

Conditions

15

How	do	I	save	multiple	things	into	the	same	place?
More	often	than	not	you	will	want	to	work	with	more	than	one	number,	one	string,	one	user	account...

...the	way	programming	languages	deal	with	this	is	with	arrays.

Arrays	are	sequential	data	structures	which	can	hold	any	kind	of	data:	numbers,	strings	&	even	other	arrays!

Here	is	an	array:

animals	=	['tiger',	'gorilla',	'cow']

To	access	any	elements	contained	inside	the	array	you	need	the	array	index.	The	array	index	is	simply	the	position	of	the	element
inside	the	array.

Arrays	are	zero-indexed,	meaning	that	the	first	element	starts	at	index	0.

Example:

animals[0]

Returns:

'tiger'

Because	 	'tiger'		is	the	first	element	of	the	array	its	index	is	0.

Notice	that	this	is	always	done	using	the	square	brackets	 	[]	,	with	a	number	inside.	This	number	represents	the	index	you	want
to	access.

If	we	wanted	to	access	the	second	element	we	would	use	index	1.

Example:

animals[1]

Returns:

'gorilla'

Remember	that	the	index	starts	at	0,	which	can	be	a	bit	confusing	at	first,	but	you	will	get	used	to	it!

What	happens	if	you	use	the	wrong	index?

If	no	value	is	present	at	a	specific	index	you	will	receive	a	 	nil		value	back.

Example:

animals[5]

Returns:

Arrays

16

nil

This	 	nil		value	means	nothing	was	found	at	this	index.

Here	is	the	most	important	thing:

If	you	only	knew	this	about	arrays,	then	you	would	be	able	to	use	them.

But	Ruby	gives	you	a	lot	of	methods	to	make	things	easier	for	you,	if	you	don't	know	exactly	what	method	to	use	it's	ok	to	fall-
back	to	fundamentals.

What	else	can	do	you	do	with	an	array?

Array	are	also	objects,	just	like	strings,	numbers,	hashes,	ranges,	etc.	And	since	they	are	objects	they	have	methods	(commands)
you	use	with	them.

Here	are	the	most	important	 	Array		methods:

push	/	<<	(they	are	the	same)
each
include?

The	 	<<		method	allows	you	to	add	new	items	to	an	existing	array.

Like	this:

the_array	=	[]

the_array	<<	1

the_array	<<	2

p	the_array

Results	in:

[1,	2]

This	is	great	to	build	a	"results"	array.	This	is	something	we	do	in	programming	a	lot.	Build	a	bigger	thing	from	smaller
things.

Note:	Even	if	the	bolded	part	sounds	obvious	to	you,	it's	very	important,	so	keep	it	in	mind	:)

The	 	each		method	allows	you	go	over	every	element	of	the	array,	one	at	a	time,	without	changing	the	order.

Every	element	is	feed	into	your	"block",	which	you	can	think	of	like	a	machine	that	takes	that	element	(like	a	word	or	number)	&
does	something	with	it	(like	add	it	to	a	total	or	print	it	on	the	screen).

Example:

animals.each	{	|animal|	puts	animal	}

Output:

tiger

gorilla

cow

Arrays

17

Important:

Notice	that	when	you	use	 	each	,	you	don't	need	the	Array	index	anymore.	That's	because	Ruby	already	takes	care	of	this	for	you!

In	this	example,	 	animal		has	the	value	for	the	current	array	element.

Then	we	have	the	 	include?		method.	This	method	will	tell	you	if	something	is	inside	the	array.

Example:

animals.include?	"tiger"

Returns:

true

What	is	multi-dimensional	arrays	&	how	do	you	work	with	them?

Up	until	now	we	have	worked	with	arrays	with	just	one	dimension.	That's	what	you	are	going	to	be	doing	most	of	the	time.

But	sometimes	you	will	come	across	with	arrays	with	multiple	dimensions	or	layers.

Here's	an	example	of	a	multi-dimensional	array:

values	=	[[1,2,3],[4,5,6],[7,8,9]]

Notice	that	this	is	just	an	array,	with	more	arrays	inside.

If	you	want	to	access	the	one	value	inside	this	kind	of	array	you	will	need	multiple	indexes.	So	it's	kind	of	like	a	grid	with
coordinates.

In	this	case	if	we	want	to	access	the	first	value	of	the	first	array.

We	would	do	this:

values[0][0]

This	will	give	you	 	1	.

The	for	the	first	value	from	the	second	sub-array.

We	would	do	this:

values[1][0]

Which	results	on	the	number	 	4	,	then	 	values[1][1]		will	give	your	 	5		&	 	values[1][2]		will	give	you	 	6	,	etc.

Summary

If	you	can	master	these	three	methods	(<<	,	 	each	,	 	include?)	&	understand	indexing	then	arrays	shouldn't	be	too	much	of	a
problem	for	you!

The	hardest	part	is	figuring	out	the	logic	&	strategy	for	your	program.	That's	where	using	something	like	 	irb		or	 	pry		is	helpful.

Arrays

18

How	do	I	write	a	loop?
Loops	let	you	repeat	one	action	many	times.

This	can	be	useful	for	many	things,	from	counting,	to	going	over	the	elements	of	an	array,	to	just	printing	a	message	on	the	screen
a	number	of	times.

But	how	do	you	write	a	loop	in	Ruby?

Well	there	a	few	ways	to	do	this...

Let's	start	with	the	most	fundamental	way.

The	 	while		loop.

Writing	a	while	loop

The	 	while		loop	is	available	in	most	programming	languages	so	it's	always	useful	to	know.	It's	also	the	kind	of	loop	that	you	can
fall-back	to	when	everything	else	fails.

And	there	are	some	situations	when	only	a	 	while		loop	would	make	sense.	For	example,	if	the	stopping	condition	of	the	loop	is
not	fixed.

Here's	a	code	example:

n	=	0

while	n	<	10

		puts	n

		n	+=	1

end

What	this	will	do	is	to	print	all	the	numbers	from	0	to	9	(10	excluded).

Notice	that	there	are	some	important	components:

The	 	n		variable
The	condition	(n	<	10)
The	 	n	+=	1	

All	of	these	are	critical	for	this	to	work.

The	variable	 	n		holds	the	value	we	are	using	for	counting,	the	condition	tells	Ruby	when	to	stop	this	loop	(when	the	value	of	 	n	
is	greater	or	equal	to	 	10),	and	the	 	n	+=	1		advances	the	counter	to	make	progress.

The	times	loop

This	is	possibly	the	easiest	loop	you	can	come	up	with.

Look	at	this	code:

10.times	{	puts	"hello"	}

What	this	does	it	to	print	the	word	 	"hello"		10	times.

As	you	can	see	there	isn't	much	to	it	&	it	should	be	easy	to	remember.

Loops

19

As	you	can	see	there	isn't	much	to	it	&	it	should	be	easy	to	remember.

But	what	if	you	want	the	number?

In	the	last	example,	with	the	 	while		loop,	we	had	access	to	this	 	n		so	we	could	print	it.

Well	you	can	also	do	that	with	 	times	.

Example:

10.times	{	|i|	puts	"hello	#{i}"	}

This	will	print	 	hello	1	,	 	hello	2	,	 	hello	3	,	etc.

The	key	here	is	the	little	 	|i|		thing,	which	by	the	way,	can	be	anything.	It	doesn't	have	to	be	an	 	|i|	.	It	could	be	 	|n|		or
	|foo|	.

It's	just	a	name!

If	you	are	familiar	with	methods,	this	 	|n|		is	like	a	method	parameter.	In	other	words,	it's	just	a	variable	that	becomes	the	current
value	for	each	iteration	of	our	 	times		loop.

The	each	loop

Now	let's	look	at	the	last	kind	of	loop	&	probably	the	one	you	are	going	to	use	the	most	often.

This	loop	requires	you	to	have	a	collection	of	items,	like	an	array,	a	range	or	a	hash	to	be	able	to	use	it.

Example:

numbers	=	[1,3,5,7]

numbers.each	{	|n|	puts	n	}

This	will	print	all	the	numbers	inside	the	 	numbers		array.

Notice	how	we	have	this	syntax	again	with	the	 	|n|	.

In	case	you	are	not	familiar	with	this,	we	call	the	whole	thing	after	 	each		a	block.

This	->	 	{	|n|	puts	n	}	.

A	block	is	just	a	way	to	create	a	method	without	a	name.

So	what	happens	is	that	 	each	,	or	any	other	method	that	takes	a	block,	is	able	to	use	our	name-less	method.

And	that's	how	 	puts	n		is	run	multiple	times.

In	fact,	do	you	want	to	know	something	cool?

An	 	each		loop	is	just	a	 	while		loop,	but	Ruby	is	managing	the	whole	condition,	variable	&	counting	for	you	behind	the	scenes.

You	know,	these	3	components	that	I	said	were	super	important	for	a	loop	to	work.

Summary
You	learned	that	a	loop	helps	you	repeat	something	a	number	of	times.	You	also	learned	3	different	ways	to	write	a	loop:	the
	while		loop,	the	 	times		loop	&	the	 	each		loop.

Loops

20

How	do	you	create	a	dictionary	in	Ruby?
A	hash	table	allows	you	to	create	a	dictionary-like	structure	in	Ruby.

It	looks	like	this:

hash	=	{}

Yes,	this	empty	pair	of	"curly"	brackets	is	what	creates	an	empty	hash.

To	add	one	item:

hash["bacon"]	=	123

What's	going	on	here?

You	may	recognize	the	square	bracket	syntax	from	Arrays,	where	we	use	that	syntax	to	ask	for	a	value	at	that	index.

The	idea	here	is	the	same.

But	instead	of	numbers	we	use	strings	(or	symbols,	but	that's	more	advanced).

Now	we	can	use	our	hash	to	see	what's	inside:

p	hash

The	result	for	this	will	be	the	following:

{"bacon"=>123}

So	this	tells	us	we	have	one	key	inside	the	hash,	with	one	value.

Note:	the	variable	 	hash		is	just	an	example,	it	doesn't	need	to	be	that	way,	you	could	use	any	name	for	your	hash	like
	foo	,	 	potato		or	whatever	:)

It	is	also	possible	to	create	a	hash	with	values	already	on	it.

Like	this:

foo	=	{"bacon"=>123,	"coconut"=>345}

Then	you	can	access	one	of	the	values	using	its	key	("bacon"	or	"coconut"	in	this	case).	So	the	key	is	like	the	word	in	a	dictionary
&	the	value	is	like	the	definition	for	that	word.

Example:

puts	foo["coconut"]

This	results	in	 	345		printed	on	the	screen.

Ruby	is	pretty	flexible,	so	it	allows	you	to	use	anything	as	your	value,	from	text	(strings),	to	numbers,	arrays,	or	even	another
hash!

How	do	I	get	a	list	of	all	the	keys?

Hashes

21

How	do	I	get	a	list	of	all	the	keys?

If	you	ever	need	a	list	of	all	the	keys,	you	can	use	the	 	keys		method.

data	=	{"bacon"=>123,	"coconut"=>345}

data.keys

This	will	result	in:

["bacon",	"coconut"]

How	do	I	loop	over	all	the	elements	of	a	hash?

You	can	do	it	like	an	array,	using	the	 	each		method.

There	is	only	one	difference.

Look	at	this	example:

data	=	{"bacon"=>123,	"coconut"=>345}

data.each	{	|key,	value|	puts	"The	key	is	#{key}	&	the	value	is	#{value}"	}

The	difference	is	in	the	arguments:	 	|key,value|	.

In	an	array	you	just	get	one	thing	(the	 	value),	but	with	a	hash	you	have	two	things,	the	 	key		&	the	 	value	.

How	do	I	check	if	a	key	is	available?

Instead	of	getting	the	list	of	keys	&	check	the	array	using	the	 	include?		method	there	is	a	better	way.

The	 	key?		method.

Example:

data	=	{"bacon"=>123,	"coconut"=>345}

data.key?("onion")

This	will	output	 	false		since	 	"onion"		is	not	a	key	inside	the	hash.

The	Fetch	Method

Let	me	show	you	about	the	fetch	&	merge	methods.

With	fetch	you	can	access	a	key	in	a	different	way.

Example:

hash.fetch("coconut")

What's	the	difference	between	this	&	the	 	[]		way?

Hashes

22

The	difference	is	what	happens	when	the	key	is	not	in	the	hash.

With	the	square	brackets	 	[]		you	will	get	a	 	nil	.	But	with	 	fetch		you	will	get	an	error	message.

hash.fetch("onion")

Will	result	in:

KeyError:	key	not	found:	"onion"

This	is	good	because	 	nil		values	are	often	a	source	of	errors.

Should	you	always	use	 	fetch		to	access	a	hash?

I	think	you	should	stick	with	 	[]		for	now,	but	keep	 	fetch		in	mind	:)

Practical	Uses	for	Hashes
So	what	are	some	uses	for	hashes?

The	most	obvious	is	to	use	them	as	a	literal	dictionary.

Example:

country_codes	=	{

		"ES"	=>	"Spain",

		"US"	=>	"United	States",

		"FR"	=>	"France"

}

Here	we	have	a	mapping	of	country	codes	to	their	country	name.

We	can	query	it	like	this:

puts	country_codes["US"]

This	will	output:

"United	States"

Always	use	a	hash	when	you	have	this	kind	of	data	mapping.

Another	thing	you	can	do	with	hashes	is	to	use	it	as	a	"file	cabinet".

For	example,	you	can	count	letters	or	words,	by	making	the	letter	the	key	&	the	count	the	value.

Here's	the	code	to	do	that:

count	=	Hash.new(0)

"hello".each_char	{	|ch|	count[ch]	+=	1	}

Notice	something	interesting	here.

Hashes

23

I	used	 	Hash.new(0)	,	instead	of	 	{}	.	This	creates	a	hash	were	values	will	default	to	 	0	,	this	is	needed	so	we	can	add	to	it	(the
	count[ch]	+=	1		part).

Summary

You	have	learned	about	hashes,	a	dictionary-like	structure	to	help	you	work	with	data.	You	have	also	learned	that	they	are
composed	of	key	/	values	pairs,	and	that	you	can	access	a	value	using	a	key	&	the	 	[]		syntax.

You	have	also	learned:

A	non-existent	key	will	return	a	 	nil		value	by	default.
The	 	each		method	is	available,	but	you	need	two	arguments	(|key,	value|).
The	fetch	method	will	allow	you	to	retrieve	a	value	&	raise	an	exception	(error	message)	instead	of	returning	 	nil	.

Hashes

24

I	got	an	error	message!	What	should	I	do?
First	of	all,	don't	panic!	It's	completely	normal	&	even	very	experienced	developers	get	error	messages	all	the	time.

Second,	realize	that	error	messages	are	there	to	help	you.

Most	of	the	time	the	error	message	has	information	to	help	you	fix	the	problem.

So	what	you	need	to	do	is	to	read	the	message	&	try	to	understand	what	it's	telling	you.

Here's	an	example	so	we	can	look	at	it	together:

exception.rb:7:in	`bar':	undefined	local	variable	or	method	`a'	for	main:Object	(NameError)

				from	exception.rb:3:in	`foo'

				from	exception.rb:10:in	`<main>`

The	most	important	line	is	usually	the	first	one.

The	first	line	will	tell	you	what	kind	of	error	you	are	dealing	with,	where	did	this	error	happen	&	a	few	more	details	about	the
error.

Errors	can	be	categorized	into	2	major	categories:

Syntax	errors
Runtime	errors

Depending	on	which	category	you	are	dealing	with	you	are	going	to	be	looking	for	different	things,	so	it's	important	to	know	what
category	you	are	working	with.

Syntax	Errors

A	syntax	error	happens	when	you	didn't	follow	the	rules	of	Ruby	&	the	language	interpreter	can't	understand	something	you
wrote.

It's	like	a	grammar	mistake.

Programming	languages	have	strict	rules	about	how	things	have	to	be	written,	so	if	you	(without	noticing)	break	one	of	the	syntax
rules	then	you	are	going	to	get	a	syntax	error.

How	do	you	recognize	a	syntax	error?

Because	the	error	will	clearly	say	it's	one.

Example:

test.rb:2:	syntax	error,	unexpected	end-of-input

When	you	see	one	of	these	don't	try	to	change	your	program's	logic,	because	that's	not	the	problem.

What	you	want	to	look	for	is	typically	one	of	the	following:

A	missing	closing	or	opening	parenthesis.

Parenthesis	in	all	their	forms	(regular	 	()	,	curly	 	{}	,	squared	 	[])	always	go	in	pairs.	If	a	closing	pair	is	missing	you	will	get	a
syntax	error.

Dealing	With	Errors

25

A	missing	closing	or	opening	quotation	symbol.

Like	parenthesis,	quotation	symbols	("		&	 	')	used	for	strings	always	go	in	pairs.

A	missing	or	extra	 	end		statement.

When	you	open	a	block	using	 	do		or	when	declaring	an	 	if		statement,	method	(with	 	def)	or	 	class		you	need	to	make	sure	to
have	the	right	amount	of	 	end		statements.

This	is	another	thing	that	has	to	go	in	pairs!

Notice	that	you	can	also	have	extra	parenthesis,	 	end		statements,	or	quotation	symbols	causing	the	syntax	error	that	you	may
need	to	delete.

Other	syntax	errors

These	are	not	all,	but	they	are	the	most	common,	so	look	for	them	first!

Runtime	Errors

This	kind	of	error	will	happen	because	something	in	your	program	is	wrong	while	it	runs.

Notice	that	Ruby	always	checks	for	syntax	first,	so	if	you	get	a	runtime	error	you	don't	have	to	worry	about	checking	for	the	right
amount	of	parenthesis	or	quotation	symbols.

The	most	common	runtime	error	is	 	NoMethodError	.

Example:

undefined	method	`foo`	for	nil:NilClass	(NoMethodError)

It	happens	because	one	of	two	reasons:

You	are	trying	to	call	a	method	on	 	nil	.
You	are	trying	to	call	a	method	that	doesn't	exist	(probably	a	typo).

The	first	one	happens	when	you	are	working	with	the	result	of	another	method	or	section	of	your	code	that	produced	a	 	nil	.

For	example,	let's	say	that	you	want	to	work	with	the	 	:bacon		key	in	a	hash,	but	for	some	reason	that	key	is	not	defined,	so	when
you	try	to	retrieve	the	value	you	will	get	a	 	nil		back.

Example:

h	=	{}

h[:bacon]

#	nil

Then	later	in	your	code,	you	try	to	use	this	value	thinking	it's	a	valid	value,	but	it	isn't	so	it	results	in	an	error.

Once	you	have	identified	this	error	your	job	is	to	find	why	the	value	is	 	nil		&	not	the	value	you	expected...

Did	you	forget	to	initialize	your	hash?

Are	you	pulling	this	data	from	a	file,	but	you	are	not	reading	it	correctly?

Dealing	With	Errors

26

The	second	reason	(wrong	method,	but	valid	object)	is	usually	fixed	with	a	visit	to	the	documentation	to	look	for	the	correct
spelling	of	the	method.

Or	maybe	that	method	doesn't	exist	at	all	because	you	have	the	wrong	class.

Note:	Remember	that	you	can	use	the	 	class		method	on	any	object	to	find	out	what	class	you	are	working	with.

So	pay	attention	to	the	details	&	what	the	error	message	is	telling	you.

Argument	Errors

This	is	a	subcategory	of	runtime	errors	&	it	happens	when	you	have	the	right	object,	the	right	method	name,	but	the	wrong
number	of	parameters	(also	known	as	arguments).

It	looks	like	this:

ArgumentError:	wrong	number	of	arguments	(0	for	1)

This	means	that	you	are	calling	the	method	using	 	0		arguments,	but	the	method	expects	 	1	.

There	is	an	easy	fix:

You	have	to	add	or	remove	arguments	from	your	method	call	to	match	the	expected	amount.

Unitialized	Constant	Error

This	one	usually	means	a	class	is	missing	or	that	you	have	mistyped	the	name	of	a	class.	The	reason	is	that	class	names	are
constants.

Constants	always	start	with	a	capital	letter,	so	it's	easy	to	tell	you	are	dealing	with	a	constant.

Example:

uninitialized	constant	StrinIO	(NameError)

To	solve	this	error	you	have	to	check	for	typos	&	make	sure	you	have	required	the	gems	or	libraries	you	need.

Type	Error
Another	runtime	error,	this	happens	when	you	are	trying	to	combine	two	incompatible	objects,	like	a	number	&	a	string.

Example:

"abc"	+	1

Results	in	this	error:

TypeError:	no	implicit	conversion	of	Fixnum	into	String

One	way	to	solve	this	is	to	make	both	sides	of	the	equation	the	same	object	type.

Example:

Dealing	With	Errors

27

"abc"	+	1.to_s

If	your	 	TypeError		mentions	 	NilClass		then	you	have	some	 	nil		value	that	you	probably	didn't	expect.	Remember	that	 	nil	
values	can	come	from	things	like	using	the	wrong	index	on	an	 	Array		or	using	the	wrong	key	on	a	 	Hash	.

Interpreter	Specific	Errors

This	is	a	kind	of	problem	that	can	only	happen	when	working	with	an	interactive	interpreter	like	 	irb		or	 	pry	.

The	thing	is	that	since	these	are	interactive,	they	won't	show	you	syntax	errors	right	away.

So	when	you	make	a	syntax	error	in	 	irb		you	might	get	into	a	state	where	it	looks	like	nothing	is	happening.

And	your	terminal	may	say	something	like:

irb(main):017:1>

or

irb(main):003:0"

Notice	the	 	:1		on	the	first	example	&	the	quotation	mark	 	"		at	the	end	in	the	second	example.

Those	are	indications	that	the	interpreter	is	waiting	for	something.

The	easiest	solution	is	to	press	 	CTRL	+	C		to	get	out	of	this	state	&	try	again!

Summary
You	have	learned	how	to	deal	with	errors,	they	are	there	to	help	you	figure	out	what's	wrong.

First	you	need	to	identify	what	kind	of	error	you	are	dealing	with,	then	look	at	the	details,	like	the	line	number	&	file	name.

Once	the	error	is	identified	then	you	can	narrow	down	the	code	that	is	producing	the	error	&	fix	it.

Have	patience,	and	don't	forget	to	Google	your	error	message	if	you	can't	figure	it	out!

Dealing	With	Errors

28

How	do	you	create	objects,	classes	&	methods?

Object-Oriented	Programming	is	a	programming	paradigm.

In	other	words,	it's	a	way	to	think	about	how	we	write	code.

In	this	paradigm	we	organize	code	in	something	we	call	a	class.

A	class	is	a	container	for:

Data
Behavior	(actions)

Examples	of	a	class	include	a	 	Book	,	a	 	Car		&	a	 	Library	.

But	we	don't	want	only	one	book	or	one	library,	we	probably	want	many	of	them.

So	that's	why	we	have	objects.

An	object	is	created	from	a	class	&	it	will	hold	its	own	data.

In	practice	what	that	means	is	that	we	can	have	different	books	with	different	values	associated	with	them	(author,	page	count,
title,	isbn,	genre...).

To	help	you	figure	out	how	to	create	the	best	classes	there	are	some	Object-Oriented	Design	principles.

Here's	a	list:

Abstraction
Encapsulation
Polymorphism
Cohesion	&	Coupling
Inheritance	&	Composition
Command/Query	separation
Design	patterns
Tell,	don't	ask
SOLID

I	have	good	news	for	you:

You	don't	have	to	worry	about	any	of	these	right	now!	But	it's	good	to	start	getting	familiar	with	the	vocabulary.

Code	Example
Now	let's	have	a	look	at	some	example	of	Object-Oriented	code	in	Ruby.

This	is	a	 	Book		class:

class	Book

end

Notice	that	you	can	name	your	class	anything	you	want,	but	it	has	to	start	with	a	capital	letter	&	usually	we	want	to	use	a	noun
instead	of	a	verb.

This	class	here	does	nothing	yet.

It	has	not	methods	&	it	has	no	data.

Object-Oriented	Programming

29

We	can	add	a	method	(behavior)	like	this:

class	Book

		def	what_am_i

				puts	"I'm	a	book!"

		end

end

Of	course	this	example	is	a	little	silly,	but	it	will	help	you	learn	how	this	works.

Using	Instance	Methods
A	method	is	just	a	section	of	code	that	we	give	a	name	to.	It's	useful	because	we	can	reuse	this	code	multiple	times	by	just	using
it's	name.

The	name	also	works	as	a	description	of	what	this	code	is	doing,	so	it's	important	to	use	good	names	for	your	methods.

How	do	we	use	this	method?

If	you	try	this:

Book.what_am_i

You	will	get	an	error!

Why?

Because	methods	by	default	need	to	be	used	from	an	object,	not	directly	from	the	class.

So	to	create	an	object	&	use	the	method:

book	=	Book.new

book.what_am_i

#	"I'm	a	book!"

The	key	here	is	the	 	new		method.	This	is	what	creates	a	 	Book		object.

Method	Parameters

Sometimes	you	want	to	send	some	data	into	a	method	so	it	can	work	with	that	data.

Like	if	you	are	writing	a	calculator	class,	you	probably	want	to	have	methods	like	 	add		&	 	multiply	.

These	methods	will	need	some	numbers	to	do	their	work	&	then	return	a	result.

Example:

class	Calculator

		def	add(a,	b)

				a	+	b

		end

		def	multiply(a,	b)

				a	+	b

		end

end

Object-Oriented	Programming

30

Notice	this:	 	(a,	b)	.

These	are	your	parameters.	Parameters	can	have	any	valid	variable	name,	so	 	(foo,	bar)		would	also	be	valid.

You	can	have	any	number	of	parameters,	but	make	sure	to	separate	them	using	a	comma!

Inside	your	method	you	can	treat	parameters	as	normal	variables.

Now,	to	call	this	method:

calculator	=	Calculator.new

puts	calculator.add(3,	4)

Which	results	in	 	7		:)

How	do	you	create	parameters	with	default	values?

You	don't	always	want	to	force	your	method	to	require	parameters.	You	can	define	your	parameters	in	a	way	that	makes	them
optional.

Example:

def	greeting(name	=	"Jesus")

		puts	"Hello	#{name},	nice	to	meet	you!"

end

Notice	the	 	name	=	"Jesus"	,	where	my	name	 	"Jesus"		is	the	default	value.

So	what	this	means	is	that	if	you	use	the	method	&	give	it	a	name	then	it	will	use	that	name.

But	if	you	don't	give	it	a	name	it	will	use	the	default	name	that	you	defined.

Note:	If	this	 	#{name}		thing	caught	you	off-guard,	this	is	called	"string	interpolation",	review	the	Strings	chapter	for	more
details	:)

Storing	Data
Remember	how	I	said	that	classes	are	composed	of	two	things?

Data	&	behavior.

Let's	enhance	our	 	Book		class	so	that	it	can	store	the	book	title.

class	Book

		attr_reader	:title

		def	initialize(title)

				@title	=	title

		end

		def	what_am_i

				puts	"I'm	a	book!"

		end

end

Now	we	can	create	multiple	books,	each	with	a	different	title:

Object-Oriented	Programming

31

book1	=	Book.new("Ruby	Deep	Dive")

book2	=	Book.new("BOBA")

And	we	can	read	the	title	like	this:

book1.title

#	"Ruby	Deep	Dive"

Notice	that	this	works	because	I	added	the	 	attr_reader	:title		line	to	our	class.	This	tells	Ruby	to	create	a	 	title		method	for
us	that	returns	the	stored	value.

Oh	and	this	 	@title		thing?

We	call	that	an	"instance	variable".

It's	a	kind	of	variable	that	is	associated	with	a	particular	object.

Class	Methods

We	have	seen	instance	methods	&	instance	variables,	both	work	with	an	instance	of	a	class	(which	is	the	same	as	an	object).

But	what	if	you	want	to	define	a	method	that	works	directly	with	the	class	&	requires	no	extra	objects	to	be	created?

Well	that's	possible.

And	we	call	that	"class	methods"	or	"singleton	methods".

Here's	how	to	define	a	class	method:

class	Book

		def	self.method_name

				puts	123

		end

end

What	makes	this	a	class	method?

The	"self"	keyword	before	the	method	name.

When	we	use	"self"	we	are	refering	to	the	current	object,	which	in	the	context	of	a	class	definition	refers	to	the	class	itself	(Book	
in	this	example).

So	we	are	saying:

"Define	a	method	for	this	class,	instead	of	a	method	for	instances	(objects)	of	this	class."

Here's	how	to	use	a	class	method:

Book.method_name

#	123

When	to	use	class	methods?

Only	when	this	is	some	standalone	"helper"	method.	Most	of	the	time	you	want	to	use	regular	instance	methods.

If	you	find	yourself	using	a	lot	of	class	methods	you	might	have	a	class	design	issue.

Object-Oriented	Programming

32

Summary

You	learned	about	Object-Oriented	Programming	(OOP),	what	is	a	class	&	an	why	we	need	object.	You	also	learned	how	to
create	a	class	in	Ruby	that	has	both	data	&	behavior.

Important	points	to	remember:

OOP	is	a	way	to	think	about	code	&	how	to	organize	it	using	classes	&	methods.
A	method	is	the	part	of	a	class	that	does	things.
We	store	data	in	instance	variables	(@example).
To	access	instance	variables	outside	the	class	own	methods	you	need	to	define	an	 	attr_reader	.
If	you	want	to	use	an	instance	method	you	need	to	create	an	object	of	that	class	first	(using	 	.new)

Exercise:

Create	a	class	named	 	Cat		that	has	a	 	color		attribute.	It	also	has	a	"speak"	method	which	prints	"meow"	on	the	screen.

Use	this	class	to	create	3	 	Cat		objects	with	different	colors.

Object-Oriented	Programming

33

What's	next?
Congratulations	on	finishing	the	book!

Did	you	know	that	most	people	that	buy	a	book	never	finish	reading	it?

Isn't	that	crazy?

But	you	did	it!	So	give	yourself	your	favorite	healthy	reward	(like	a	high	%	cocoa	chocolate	bar!).

There	is	still	plenty	of	work	to	do,	you	are	just	getting	started.

First	I	want	you	to	read	this	book	again	a	few	times	until	everything	sinks	in.	Repetition	is	very	important	when	developing	new
skills.

Then	I	want	you	to	see	what	kinds	of	programs	can	you	come	up	on	your	own	just	for	fun.	I	know	you	have	big	projects	in	mind,
but	keep	it	simple	for	now	:)

When	you	are	feel	ready	to	take	the	next	step	you	will	want	to	start	reading	on	the	following	topics:

Modules
Enumerable	methods
Inheritance	&	Composition
Regular	expressions
TDD	(Test-Driven	Development)
Sinatra

You	will	also	want	to	join	my	ongoing	Ruby	education	program	here:

https://www.rubyguides.com/ruby-guides-pro/

And	grab	a	copy	of	the	next	book	in	the	series:

https://www.rubyguides.com/ruby-book/

Thanks	for	reading!

-	Jesus	Castello

What's	Next?

34

https://www.rubyguides.com/ruby-guides-pro/
https://www.rubyguides.com/ruby-book/

	Introduction
	Introduction
	Variables
	Strings
	Conditions
	Arrays
	Loops
	Hashes
	Dealing With Errors
	Object-Oriented Programming
	What's Next?

